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Abstract 

A fast hybrid system for the automated detection and 
verification of active regions (plages) and filaments in solar 
images is presented in this paper. The system combines 
automated image processing with machine learning. The 
imaging part consists of five major stages. The solar disk is 
detected in the first stage using a morphological hit-miss 
transform, watershed transform and Filling algorithm. An 
image enhancement technique is introduced to remove the 
limb darkening effect and intensity filtering is implemented 
followed by a modified region growing technique to detect 
the regions of interest (RoIs). In the final stage, detection 
windows are implemented to determine the positions of RoIs. 
The detection performance is enhanced further using a neural 
network (NN).  

1 Introduction 
Observatories and satellites provide continuous automated 
monitoring of the sun. The solar images are subject to various 
distortions caused by the conditions of observations and 
instrumentation errors. These distortions must be corrected, in 
order to allow automated image processing [1]. In addition, 
regions located near the limb are viewed obliquely and may 
contain incomplete features. The substantial information 
about different solar features contained in these images 
cannot be fully processed manually and require tools 
developed for the automated recognition of the features of 
interests.  

Solar filaments are one of the features whose detection is very 
important for understanding solar activity. On the solar disk 
filaments look like a dark elongated features on brighter 
background and can have a lifetime from one to three solar 
rotations. Although their heliocentric location and their shape 
do not change grossly there are still visible changes seen in 
their elongation, position with respect to an active region and 
magnetic field configuration. Active regions are regions on 
the solar disk with a very strong magnetic field that is able to 
confine high temperature gas. Flares are very large explosive 
events that could occur when the magnetic flux tubes of the 
active regions are moved around interacting with each other 
[2] 

The key to space weather monitoring and prediction is the 
accurate detection of solar features affecting space weather 
(i.e., flares, coronal mass ejections CMEs, etc.). Detecting 
filaments and active regions can provide an indication of the 
solar activity. It can be a precursors for flares or CMEs, 
which are very energetic phenomena and can cause severe 
problems for space industry, earth based electromagnetic 
communications and power systems, radio transmission, 
space industry and so on. The accurate detection of active 

regions can provide more insight into the formation, support 
and disruptions of flares and CMEs [3].  

In this paper, the aim is to provide robust, fast and accurate 
automated detection for solar features. In addition, we aim to 
simplify the detection process, so that the same algorithm can 
be applied for the detection of different features, with very 
minimal changes. The detection algorithm is coupled with 
machine learning to increase the accuracy of detection. 

This paper is organised as follows: Section 2 covers briefly 
the literature background. The detection of the solar region 
using the Filling algorithm is described in Section 3. Section 
4 is devoted to the initial detection of RoI using the intensity 
filtering. The final detection of RoI is given in section 5. The 
practical implementation is reported in Section 6 and the 
verification stage is given in Section 7. Finally, the 
concluding remarks are provided in Section 8. 

2 Literature Background 

This section covers briefly some of the imaging algorithms 
that were implemented previously for the detection of solar 
features. In addition, it describes the physical and imaging 
principles for the H-alpha and Calcium II K-line Images, 
which are used in this paper. 
 
2.1 Brief Survey  

There have been previous attempts to apply imaging 
algorithms to detect solar features. In [4], local thresholding 
and region-growing methods were used to detect filament 
disappearances. In [3], active regions were detected based on 
region growing. Filaments were detected in H-alpha images 
in [5] using morphological closing operations with multi-
directional linear structuring elements to extract elongated 
shapes. The Singular Spectrum Analysis of signals was used 
to detect active regions on solar disk, in [6]. In addition, 
Neural Networks were used in [7] for filament recognition in 
solar images and in [8] for flare detection. The algorithm we 
introduce here is fast compared to the other algorithms and is 
capable of detecting more than one type of solar features. 

2.2 H-alpha and Calcium II K-line Images 

H-alpha images (Fig. 1) are made by observing light from a 
particular line in the hydrogen spectrum at 6563 Å (red light) 
[9]. The core of the line is formed between 1200 and 1800 km 
above the visible surface. The presence of interacting 
magnetic fields in the chromosphere generates enormous 
amount of heat. The heated regions are represented with 
brighter pixels in the captured H-alpha images. H-alpha 
images also show many dark filamentary structures on the 
solar disk, which correspond to magnetic loops reaching up 
into the solar corona. These features tend to be cooler than the 
surrounding corona and permit H-alpha absorption to take 
place, thus their dark appearance [10].  



Full disk images of the Sun at the H-alpha wavelength have 
been made from the ground since 1926 and have become an 
integral part of the space weather forecasting effort. In this 
paper, H-alpha images were obtained from Meudon 
observatory-France (http://bass2000.obspm.fr). In addition, 
H-alpha images can be captured using satellites, which would 
achieve near 100% temporal coverage [11]. H-alpha images 
can be used for examining solar active regions, 
chromospheric features like filaments and sunspots, and 
flares. 

The Calcium II K-line images are important for solar feature 
analysis. Singly ionized calcium atoms in the solar 
chromosphere and upper photosphere form the Calcium II K-
line, which is a very broad absorption line at 3933 angstroms 
(violet light) [12]. The K3 feature, which is the central 
minimum, is formed at about 2000 km above the visible 
surface. The two maxima on either side of the K3 minimum 
are referred to as the K2 peaks and they are formed at height 
from about 600 to 1500 km above the visible surface. The K1 
minima, just outside of the K2 peaks, are formed at about 500 
km above the visible surface. In these images (Fig. 1.b), the 
brighter regions correspond to regions of strong magnetic 
field [13]. Dark sunspots and filaments are also visible in 
these images [12]. 

 

H-alpha Image CA K-line Image 

 

Figure 1 A H-alpha and CA K3 image captured on 
14/12/2004 (http://bass2000.obspm.fr) 

3 The detection of the solar region 

The solar disk is detected using combination of 
morphological features. The Filling algorithm in [14] is 
designed to detect closed shape objects in digital images. It is 
based on the morphological hit-miss transform (HMT) [5,6], 
used for the edge detection and noise removal, and the 
morphological watershed transform (WST) used to analyse 
the image. In this paper, the Filling algorithm is used to detect 
the largest closed shape object in the image, which is the solar 
disk. Detecting the solar disk is important because it 
eliminates textual and non-solar information that may be 
contained in the image. 

3.1 The Filling Algorithm  

The Filling algorithm was designed to distinguish between the 
background region that lies outside the object and the region 
that lies within the object. The algorithm depends on 

understanding the behaviour of HMT edges and WST lines 
inside closed and open shape objects.  

Closed regions have WST lines that divide them into two 
parts or more. Every WST pixel is surrounded by two 
horizontal edge pixels, one pixel from the right and one from 
the left. In addition, the WST lines in closed regions, starts 
from an edge pixel and ends in an edge pixel [14]. These 
findings can be examined in Figure 2, where WST is applied 
to the HMT image of a solar image. 

These characteristics are represented in terms of a detection 
algorithm that starts by finding all the horizontal edges that 
have WST lines emerging from them. Every WST line that is 
vertically continuous and ends in another horizontal edge is 
highlighted, as it may exist inside an object. 

 
HMT Binary Image 

 
WST image 

Figure 2: Applying HMT and WST to a solar image 

3.1.1 Pseudo-Code of the Filling Algorithm 

1. Apply the HMT [15] to the input image to obtain the edge-
detected image. Low thresholds are applied to obtain the 
binary image.  

2. Apply WST to the edge detected image.  

3. Search for every horizontal edge, if a WST pixel emerges 
from this edge then it is considered to be a candidate. This 
process is repeated for the whole image. 

4. Process all the candidate edges, if the following conditions 
are met then the candidate is accepted:  

� The WST line is vertically continuous. 

� The WST line does not suffer from large horizontal 
displacements.  

� The WST line is applied downwards until it meets a 
horizontal edge. 

If these conditions are satisfied then the WST line is labelled 
using a false colour. 

5.  For every false–coloured WST line, the black pixels 
that separate it from its surrounding edge pixels are converted 
to white. This image is called F. 

6.  Logical AND is carried out between the input image 
and image F to provide the output image. 

The Filling algorithm provides valuable information about the 
shape, size and location of all objects in the image. This 
information is used to isolate the regions of interest (RoIs). 
The longest highlighted WST line corresponds to the edges of 
the solar disk, which is the largest object in these images. The 



detailed implementation of the algorithm is shown in Figure 
3. 
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Figure 3: The intermediate images resulting from the 
implementation of the solar region detection algorithm. 

4 The Initial detection of Solar Features using 

intensity filtering 

After the solar disk is detected, limb darkening effect cleaning 
followed by intensity filtering are applied to the images in 
order to detect the candidate pixels for the desired solar 
feature. Limb darkening cleaning is applied only to the H-
alpha images that are used to detect filaments because the 
limb darkening effect causes the background surrounding 
filaments to become darker, which makes the detection of 
filaments harder.  
 
4.1 Cleaning of limb darkening 

Most solar images suffer from limb darkening which is the 
gradual decrease in brightness of the disk of the Sun as 
observed from its centre to its edge, or limb. This 
phenomenon is readily apparent in photographs of the Sun. 
Limb darkening occurs because the solar atmosphere 
increases in temperature with depth. At the centre of the solar 
disk, an observer sees the deepest and warmest layers that 
emit the most light. At the limb, only the upper, cooler layers 
that produce less light can be seen [16].  

Allen’s function [17] is used in this paper to eliminate the 
limb darkening effect. The Solar limb darkening function 
given by Allen is: 

2( ) (0) 1-[u (1-cos )]-[v (1- cos )]I Iθ θ θ = × × ×   

Where θ represents the angle between Sun’s radius vector and 
the line of sight through the centre of the disk and u and v are 
constants calculated by using the observation 
wavelength. ( )I θ is the resulting intensity value and (0)I  is 

the intensity value at the disk centre.  

In order to find the angle θ, the centre of the solar disk and its 
radius (R) must be determined. The centre of the solar disk 
can be easily determined using the centre of mass (centroid) 

method [18]. The x and y coordinates for centre of solar disk 
calculated using Equation (1) and Equation (2) respectively. 

Sum of Solar Region's x-pixel coordinates
CoM(x) = 

 Number of Pixels in Solar Region
 (1) 

Sum of Solar Region's y-pixel coordinates
CoM(y) = 

 Number of Pixels in Solar Region
 (2) 

The radius (R) is determined by finding the horizontal and 
vertical distances towards north, south, west and east 
separating the centre from the solar limb. The average of 
these distances is taken to be the radius. The average of the 
four distances is taken because the shape of the solar disk is 
not always exactly circular.  

Constants u and v are calculated based on the observation 
wavelength depending on the type of the solar image. For H-
alpha images, the calculated u and v constants are equal to 
0.795 and –0.197 respectively, corresponding to an 
observation wavelength of 6563 angstroms. 

The u and v values are calculated using Equation (3) and 
Equation  (4) respectively [19]:  

5

i=0

u = i

iW A×∑  (3) 

Where, W is the observation wavelength and, A0 = -
8.9829751, A1= 0.0069093916, A2 = -1.8144591e-6, A3 = 

2.2540875e-10, A4 = -1.3389747e-14, A5 = 3.0453572e-19. 

5

i=0

v = i

iW B×∑  (4) 

Where, W is the observation wavelength and, B0 = 9.2891180, 
B1= -0.0062212632, B2 = 1.5788029e-6, B3 = -1.9359644e-10, 
B4 = 1.1444469e-14, B5 = -2.599494e-19. 

Angle θ is calculated for each pixel depending on its distance 
from the centre of the solar disk. This distance is found based 
on Equation (5). 

2 2D = X Y+   (5) 

Where, D is the shortest distance between both pixels, X is the 
horizontal distance between the centre pixel and the selected 
pixel, while Y is the vertical distance. Distances D, X and Y 
are shown in Figure 4. Angle θ is calculated using Equation 
(6), which depends on distance D and the radius of the solar 
disk R. 

 = arcsin( / )D Rθ  (6) 

Afterwards, a new grey-scale value is calculated for the 

processed pixel using Equation (7), where, 0 ( , )Pixel x y  is 

the initial grey scale value of the processed pixel and 

( , )Pixel x y  is the new grey scale value of the same pixel.  



.                    

0

2

( , )
( , )

1-[u (1-cos )]-[v (1- cos )]

Pixel x y
Pixel x y

θ θ
=
 × × 

  (7) 

 

 

Figure 4: The image showing the variables used in formulas 
used in enhancement algorithm. 
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Figure 5: Results of enhancement for H-alpha image, (A) is 
the original image, (B) is the enhanced image, and (C) is the 
contrast enhanced difference of two images 

An example result from applying a correction based on 
Allen’s function is shown in Figure 5, where the contrast 
enhanced difference between the original and enhanced image 
is shown to illustrate the removal of limb darkening effect.  

4.2 Initial detection of RoI using intensity filtering 

After removing the limb darkening, intensity filtering is 
applied in order to detect the candidate pixels for the desired 
solar features. The filaments are darker in colour, which 
enables an intensity filter with a low threshold to indicate 
their positions and to eliminate the background and active 
regions. For the brighter coloured active regions an intensity 
filter with a high threshold value is used to indicate their 
positions.  

The grey scale value of every pixel in the enhanced image is 
compared against a detection threshold and replaced by a 

white pixel only if its initial value is smaller than the intensity 
threshold for filaments and larger than the intensity threshold 
for active regions. The filtering stage provides two images; 
the first contains the candidates for active regions while the 
second contains the candidates for filaments. In Figure 6, 
intensity filtering results for one H-alpha and one CA II K3 
image are shown, in this paper H-alpha images are used for 
the detection of filaments while CA II K3 images are used for 
the detection of active regions.  

The threshold value for each image is found automatically 
using Equation (8), where, µ is the mean, σ  represents the 

standard deviation, and α is a constant that is determined 
based on the type of the features to be detected. 

Threshold = ( (1 ) )
σ

µ α σ
µ

± + − ×  (8) 

For filaments, constant α is calculated by using Equation (9) 
and (-) sign is used in Equation (8). 

8
f

µ
α =  (9) 

For active regions, constant α is calculated by using 
Equation (10) and (+) sign is used in Equation (8). 

255

5
a

µ
α

−
=  (10) 

The equations 9 and 10 found empirically by taking into 
account, the variance of greyscale values of the solar features 
in different types of solar images.  
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Figure 6: The results of intensity filtering 

5 The detection of the solar feature regions  

In this stage, a region-growing algorithm modified compared 
with that in [3,4] is followed by a group detection algorithm is 
applied in order to detect the solar features. 

5.1 Applying the Modified Region Growing algorithm 



The modified region growing is applied in order to detect 
pixels that are regions of interest but have not been detected 
by intensity filtering. Region growing was applied for the 
detection of solar regions in [4] and [3]. However, its 
accuracy is affected mainly by the accurate selection of its 
corresponding seeds. Our technique differs from the region 
growing techniques suggested by [4] and [3] because it is 
applied to binary images that result from the intensity filtering 
stage, where the seeds are simply the white pixels. Our 
technique also provides further filtering for the unwanted 
pixels that were marked during the intensity filtering. The 
intensity filtering detects the pixels after comparing them with 
a threshold. It does not take into account other pixels that 
were not detected but are connected to the detected pixels. 
The modified region growing is applied to overcome this 
problem.  

5.1.1 Pseudo-Code of the Modified Region Growing 

Algorithm 

1. The percentage of the number of previously detected 
pixels to the total number of pixels in the image is found. 
The variable size windows and the threshold value are 
based on the percentage value, and are determined by the 
value of X, which is found empirically, as shown in 
Table 1.  After X is found, the size of the corresponding 
window and thresholds are calculated as shown below.  

Window (1) is equal to (2X+1) × (2X+1), window (2) is 
equal to (2X+7) × (2X+7) and the threshold value is 
equal to X2/2. 

% X Window (1) Window (2) Threshold 

<1 5 11x11 17x17 32 
<3 6 9x9 15x15 25 
=>3 7 7x7 13x13 18 

Table 1: The window sizes and threshold values used for the 
modified Region Growing. 

 

2. The area around the detected pixel to be processed is 
scanned for other previously detected pixels. If a pixel is 
found it is connected to the main pixel with a straight line as 
shown in Figure 7. The details of this procedure is as follows:  

a.  In order to connect pixels, a window (Table 1 –
Column (2)) is centred on the marked pixel and the search 
for other marked pixels within this window is carried out. 
A simple first-degree polynomial is created to connect this 
pixel to the marked pixel using a false colour. The 
equation (y=ax+b) is used to find the coordinates of the 
connecting pixels, with a being the slope of the straight 
line and b being the y-intercept.  

b. This process continues for all of the previously 
marked pixels. The newly marked false coloured pixels 
are not taken into account. 

3. For all the previously detected pixels, the resulting 
image is processed again. This time, another window (Table 1 
– Column (3)) is centred on the marked pixel and all other 

marked pixels within this window are counted. If the total 
number of the marked pixels inside this area is smaller than 
the corresponding threshold value (Table 1 – Column (4)), 
then the marked pixel in the centre of the window is deleted 
otherwise all the pixels within the window are marked. This 
process continues for all the previously marked pixels.  

 
 

a. The candidate pixel and its 
search area 

b. Applying the first stage 
of region growing to the 

candidate pixel 

Figure 7: The implementation of the modified region-
growing algorithm  

5.2 The Group detection algorithm  

This stage aims to detect the locations of the desired features 
after the application of the modified region-growing 
algorithm. The algorithm starts by detecting the adjacent and 
marked pixels in each row, as shown in Figure 8. The row 
number, the starting column and the ending column are 
recorded for these pixels. Afterwards, all the vertically 
adjacent rows are detected and considered as one group 
(whole feature).  

 

Figure 8: The terms used in the region detection process. 

5.2.1 Pseudo-Code for the detection of groups  

1. The adjacent and marked pixels in each row are recorded 
using their row number, the starting column and the ending 
column number. 

2. Each recorded row is highlighted and given index 0 in the 
beginning of this stage. 

3. Before processing each recorded row, if its index is 0 it is 
given a number starting from 1, which is increased every time 
this row is processed.  

4. All the pixels of the processed row are compared with 
pixels of other rows to find whether they are vertically 



adjacent or not. If the rows are vertically adjacent, then the 
index number of the detected row is examined. 

• If its index number is 0, then it is replaced with the 
index number of the main row. 

• If its index number is nonzero, then this indicates 
that this row was processed before. Hence, its number is 
assigned to the main row and to all the rows that have the 
same index number as the main row. 

5. The 3rd and 4th steps are repeated until all the rows are 
recursively checked. 

6. After all the rows are processed; the rows are checked for 
their final index numbers. All rows that share the same index 
number are assumed to be vertically adjacent, and are treated 
as groups that represent a feature.  

7. The locations of the pixels belonging to the detected groups 
are found and stored in multiple size arrays. The generated 
arrays contain the detected solar features.  

The detection algorithm presented here can be used to process 
CA II K3 and H-alpha images to provide the exact positions 
for active regions and filaments. It can be used to detect other 
solar features (such as sunspots) just by modifying the 
intensity filtering stage to produce the candidates for this new 
feature. Examples of the complete implementation of the 
detection algorithm are shown in Figures 9 and 10.  
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Figure 9: The detection of Filaments. 
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Figure 10: The detection of Active Regions 

 

6 The evaluation of performance  

The detection algorithm was implemented on solar images 
obtained from the Meudon observatory-France (Figure 11 and 
Figure 12). These images can be downloaded from 
http://bass2000.obspm.fr. The detection algorithm finds both 
solar filaments and active regions in a 1024 × 1024 image in 
less than three seconds using P4-2.4 G Hz PC with 512 Mbyte 
RAM. In order to evaluate the detection performance, the 
following two error rates are introduced [20]:  
• The false acceptance rate (FAR), which is the probability 
of a non-RoI being detected as a RoI.  
• The false rejection rate (FRR), which is the probability of 
a RoI not being detected because it is considered to be a non-
RoI. 

The H-alpha and CA II K3 images available (depending on 
observing conditions) for the period from 2/7/2001 till 
4/8/2001 were used to evaluate the detection performances for 
filaments and active regions respectively. For every image 
used, a corresponding manually constructed synoptic map that 
contains the locations of RoI exists. These synoptic maps 
were obtained using the subjective analysis of a solar 
observer. Subjective analysis depends mainly of the 
experience of the human operator, but it is also affected by 
fatigue and other human-related factors. On the other hand, 
the objective analysis of solar images, which is carried out by 
the automated detection system, provides consistent 
performance but its accuracy is usually lower. The FAR and 
FRR error parameters are established by comparing the 
detected RoI, which are generated using the current detection 
algorithms, with those detected manually and recorded in the 
synoptic maps.  
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Figure 11: The images showing detected active regions 
before and after verification stages and synoptic map for 
active regions from Meudon observatory. 

 

 
Original image 

 
Detected Regions 

 
Detected Regions After 

Verification 

 
Synoptic Map for Active 
Regions from Meudon  

Figure 12: The images showing detected filaments before 
and after verification stages and synoptic map for filaments 
from Meudon observatory. 

The results for the detection of active regions are shown in 
Table 2. The first column shows the date for every CA II K3 
Line image, while the total number of active regions that are 
manually detected is indicated in Column 2. The FAR and 
FRR error rates are shown in Columns 3 and 4, respectively. 
The FAR error rate represents the percentage of the detected 
regions that do not contain real active regions. On the other 
hand, the FRR error rate is the percentage of the active 
regions that are not detected in the resulting image. The 

average FAR error rate for all the images of Table 2 is found 
to be 67% while the average FRR error rate is 3%.   

 

Date Active R. FAR(D) FRR(D) FAR (V) FRR(V) 

02/07/2001 21  76% 0% 5% 0% 

03/07/2001 21  52% 0% 5% 5% 

04/07/2001 20  44% 0% 10% 10% 

06/07/2001 16  59% 0% 12% 6% 

09/07/2001 16  52% 0% 0% 13% 

10/07/2001 19  63% 0% 0% 5% 

11/07/2001 21  75% 0% 0% 14% 

15/07/2001 16  46% 6% 0% 25% 

16/07/2001 16  71% 0% 0% 0% 

17/07/2001 18  67% 6% 0% 11% 

19/07/2001 19  62% 0% 0% 11% 

20/07/2001 18  68% 6% 0% 11% 

21/07/2001 16  78% 0% 0% 13% 

22/07/2001 16  80% 6% 0% 13% 

23/07/2001 14  54% 7% 0% 14% 

24/07/2001 16  79% 6% 6% 6% 

25/07/2001 16  41% 0% 0% 25% 

26/07/2001 16  80% 6% 0% 6% 

27/07/2001 15  76% 7% 0% 20% 

28/07/2001 15  85% 13% 0% 20% 

29/07/2001 12  67% 8% 0% 58% 

30/07/2001 12  74% 0% 0% 25% 

31/07/2001 15  83% 0% 13% 7% 

03/08/2001 15  77% 0% 0% 20% 

04/08/2001 16  59% 13% 0% 31% 

Average 17  67% 3% 2% 15% 

 

Table 2: The FAR and FRR values for selected solar images, 
representing active region detection and verification 
processes. 

 

The results for the detection of filaments are shown in Table 
3. The first column shows the date of every H-alpha image, 
while the total number of filaments that are manually detected 
is indicated in Column 2. The FAR and FRR error rates are 
shown in Columns 3 and 4, respectively. The average FAR 
error rate for all the images of Table 3 is found to be 19% 
while the average FRR error rate is 26%.   

Applying the detection algorithm for the detection of 
filaments and active regions has resulted in high FAR, which 
is caused mainly by the threshold of the intensity filtering 
stage. However, choosing lower thresholds for filaments and 
higher thresholds for active regions will reduce the FAR but 
will increase the FRR. To overcome this, machine learning is 
used to reduce the FAR error rate. Hence, a new stage called 
the verification stage is added.  



Date Filaments FAR(D) FRR(D) FAR (V) FRR(V) 

02/07/2001 44  15% 25% 3% 34% 

03/07/2001 45  5% 18% 0% 31% 

04/07/2001 38  3% 26% 0% 39% 

06/07/2001 50  18% 18% 0% 22% 

09/07/2001 41  12% 10% 3% 29% 

10/07/2001 39  15% 28% 4% 31% 

11/07/2001 32  7% 19% 4% 28% 

15/07/2001 32  31% 38% 5% 41% 

16/07/2001 26  36% 31% 6% 42% 

17/07/2001 34  31% 26% 9% 41% 

19/07/2001 41  27% 34% 9% 49% 

20/07/2001 36  24% 31% 8% 39% 

21/07/2001 36  4% 39% 5% 44% 

22/07/2001 40  21% 23% 6% 28% 

23/07/2001 45  15% 38% 0% 47% 

24/07/2001 50  11% 32% 7% 44% 

25/07/2001 34  18% 32% 0% 50% 

26/07/2001 37  9% 22% 3% 24% 

27/07/2001 40  20% 20% 0% 30% 

28/07/2001 44  48% 27% 7% 36% 

29/07/2001 38  11% 18% 0% 37% 

30/07/2001 52  18% 10% 2% 19% 

31/07/2001 43  21% 23% 3% 35% 

03/08/2001 46  29% 41% 0% 48% 

04/08/2001 37  33% 22% 7% 27% 

Average 40  19% 26% 4% 36% 

 

Table 3: The FAR and FRR values for selected solar images, 
representing filament detection and verification processes. 

7 Verification of solar features using Neural 

Networks 

A verification stage is implemented to enhance the accuracy 
of the detection. The verification is carried out using a Neural 
Network (NN) with back propagation training algorithm. The 
NN training vector is constructed by extracting statistical 
features characterising RoI and non-RoI. The extracted 
statistical features are: mean, standard deviation, range of 
grey-scale intensities, ratio of dark regions, ratio of bright 
regions, skew and kurtosis. These features can be calculated 
as follow: 
• Mean, which can be calculated using Equation (11), 
where, µ is the mean, N is the number of pixels and X(n) is the 
grey scale value of a pixel shown by n: 
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• Standard deviation, which can be calculated using 
Equation (12): 
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• Skew, which is a data distribution that shows distortion 
in a positive or negative direction and can be calculated using 
Equation (13): 
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• Kurtosis, which is a measure of the peakedness (broad or 
narrow) of a distribution and can be calculated using Equation 
(14): 
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• Ratio of the bright regions, which is the ratio of the total 
number of pixels above a defined threshold value divided by 
the total number of pixels. The threshold value is equal to the 
+%25 of the calculated mean. 
• Ratio of the dark regions, which is the ratio of the total 
number of pixels below a defined threshold value divided by 
the total number of pixels. The threshold is equal to %-25 of 
the calculated mean. 
• Range of grey scale intensities, which is the difference 
between the maximum grey-scale value and the minimum 
grey-scale value, normalized by 255.  

The features for the RoI are extracted from the detected 
regions after being verified manually with the synoptic maps. 
The features for the non-RoI are extracted manually and they 
represent the background regions that contain no RoI (i.e., no 
filaments or active regions) (Figure 13). Several experiments 
are carried out and it was found empirically that the best 
learning performance is obtained using the following NN 
topology: 7 input nodes, one hidden layer with 9 nodes and 
two output nodes. The output nodes indicate whether the 
detected region is a RoI or not.  

 
Active Region 

 
 

Filament  
Non-Feature 

Figure 13: Sample images used to train NN. 

The training of the NN is considered to be successful when 
the NN manages to converge to the normalized system error, 
which is 0.001. Feature extraction is applied to every region 
that is detected by the detection algorithm. The seven 
statistical features are calculated and fed to the NN to 
determine whether the detected region represents a RoI or not. 
This approach is implemented on the entire test data and it is 
found that the average FAR for the detection of active regions 
has dropped from 67% to 2% and the average FRR has 
increased to 15% as shown in Table 2 column 5 and 6. 



Moreover, the average FAR for the detection of filaments has 
dropped from 19% to 4% and the average FRR has increased 
to 36% as shown in Table 3 column 5 and 6.  The increases in 
FRRs are not desired but acceptable when compared with the 
great reduction in FARs. These rates can be improved by 
further training of NN. 

8 Conclusions 

In this paper, a fast algorithm for the detection of active 
regions in CA II K3 Line images and filaments in H-alpha 
images is presented. The detection process consists of five 
major stages: the detection of the solar region, enhancement, 
initial detection using intensity filtering, and final detection 
using modified region growing and area detection of solar 
features.   

The algorithms are tested on solar images that are obtained 
from the Meudon observatory, covering the period from 2/ 7 / 
2001 to 4/ 8/ 2001. The detection algorithm is fast and it 
achieves a FAR error rate of 67% and a FRR error rate of 3%, 
when compared with the manually detected active regions in 
the corresponding synoptic maps. In the same manner, 
applying the detection algorithm on H-alpha mages for the 
same period achieves a FAR error rate of 19% and a FRR 
error rate of 14%, when compared with the manually detected 
filaments in the synoptic maps. 

The FAR is very high for both cases and a verification stage 
is added to the current detection technique, to increase the 
accuracy of the detected regions. A NN is trained on 
statistical features extracted from the active regions and non-
active regions. Using this combination the FAR has dropped 
to 2%. Another NN is trained on statistical features extracted 
from filament regions and non-filament regions. Using this 
combination the FAR has dropped to 4%. 

The system introduced in this paper can detect various solar 
features simultaneously. All the imaging stages are shared for 
the filaments and active regions, except the intensity filtering 
stage. This portability makes the algorithms quite useful and 
fast for the detection of various types of solar features in 
different solar images. 

In the future, we would like to apply more advanced image 
enhancement algorithms that can adapt to the different types 
of solar images automatically. The enhancement algorithms 
should be able to tackle any deformation that may exist in 
these images. We would also like to track the appearance and 
disappearance of solar features in images taken over 
consecutive days.   
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