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Abstract- In this paper, a machine learning system that can 
provide short-term automated prediction for the 
occurrence of significant solar flares is presented. This 
system extracts the experts’ knowledge embedded in the 
public NGDC solar catalogues and represents it in learning 
rules that can be used by computers to predict flares. This 
work builds on our previous work and the prediction 
system is tested intensively using the Jackknife technique 
and using real input samples from the Halloween storm. 
The system has managed to predict all the significant flares 
that took place during this storm.

I. INTRODUCTION

Severe solar activities can have significant impact on our life 
on Earth. The most dramatic solar activity events affecting the 
terrestrial environment are solar flares and Coronal Mass 
Ejections (CMEs). Flares and CMEs are two types of solar 
eruption that can spew vast quantities of radiation and charged 
particles into space. The Earth environment and geomagnetic 
activity is affected by the ionized solar plasma, also known as 
the solar wind. The solar wind flows outward from the Sun to 
form the heliosphere and it is affected by solar activity and 
carries with it the magnetic field of the Sun. This interplanetary 
magnetic field (IMF) creates storms by injecting plasma into 
the Earth’s magnetosphere. 

Solar activities can affect wireless communications systems 
causing interruption of service (e.g., frequency jamming and 
dropped communications) due to radio bursts caused by 
microwave emissions from the Sun. The arrival of solar X-rays 
that are traveling at the speed of light can disrupt point-to-point 
high frequency radio communications. This phenomenon, 
called a sudden ionospheric disturbance (SID), has been 
associated for a long time with solar flares. Concurrent with X-
ray emission, solar activity often emits radio noise that can 
interfere with communications and radar systems on the sunlit 
side of Earth. Adverse space weather conditions can cause 
anomalies and system failures in spacecraft operations and in 
satellites. During periods of increased solar activity the outer 
atmosphere of the Earth expands, which results in a greater 
drag on the movement of satellites and spacecraft. This causes 
a slow-down and a change in orbit that could shorten the life-
time of these missions. Energetic particles from the Sun may 
cause direct physical damage to the equipment and the 
spacecraft (e.g., solar panels). Low and high Earth-orbiting 

spacecraft and satellites are subject to a number of 
environmental radiation hazards, such as direct collision and/or 
electrical upsets, caused by charged particles.  In addition, 
high-energy charged particles which result from major bursts 
of solar activity (i.e., CMEs) are hazardous to astronauts on 
space missions. In space, astronauts perform extra-vehicular 
activities (EVAs) and they can be subjected to solar energetic 
particle events and cosmic ray particles. Particle energies can 
increase hundreds of times after an extra ordinary solar flare 
and/or CME and can endanger the life of astronauts. The 
Halloween storm, which occurred late October early November 
2003, caused serious problems including damaging 28 
satellites, knocking two out of commission, diverting airplane 
routes and causing power failures in Sweden, and others.

Satellite operators, space agencies, aviation industry, power 
generation and distribution industry, oil and gas industry and 
railways can benefit from an effective space weather prediction 
system. The importance of space weather will continue to 
increase because our reliance on satellites for communications 
and resource information (meteorological, geophysical 
prospecting, navigation, and remote sensing) increases year 
after year. The ability to predict major solar storms can give 
organizations sufficient lead time to implement preventive and 
safety measures.

The aim of this paper is to provide a practical example on 
how machine learning can be used to predict the actual 
occurrence of large solar flares. The fully automated prediction 
system could extract the experts’ knowledge that is embedded 
in solar data catalogues to provide short-term real-time 
prediction for solar flares. This knowledge is extracted and 
represented in terms of learning rules that could be processed 
by computers using machine learning techniques. Many 
experiments are carried out using the Jackknife technique to 
study the efficiency of this system. The system is also tested on 
the sunspot groups that are available before and during the 
Halloween storm of 2003. The predictions of our system will 
be compared with the actual flare eruptions that took place 
then. This paper is organized as follows: Section II provides 
information about the public solar catalogues used in this 
paper. The machine learning algorithm is described in Section 
III. Section IV is devoted to the association of solar features, 
practical implementation and the testing of our algorithm. 
Finally, the concluding remarks are provided in Section V.



II. DATA

Data from the publicly available sunspot group catalogue 
and the solar flare catalogue, which is provided by the National 
Geophysical Data Centre (NGDC), is used for this work. 
NGDC keeps record of data from several observatories around 
the world and holds one of the most comprehensive publicly 
available databases for solar features and activities.

Flares are classified according to their x-ray brightness in the 
wavelength range from 1 to 8 Angstroms. C, M, and X class 
flares can affect earth. C-class flares are moderate flares with 
few noticeable consequences on Earth (i.e., minor geomagnetic 
storms). M-class flares are large; they generally cause brief 
radio blackouts that affect Earth's Polar Regions by causing 
major geomagnetic storms. X-class flares can trigger planet-
wide radio blackouts and long-lasting radiation storms. This 
catalogue provides information about dates, starting and ending 
times for flare eruptions, location, NOAA number of the 
corresponding active region and x-ray classification for the 
detected flares. Not all the flares have associated NOAA 
numbers. Flares without NOAA numbers are not included in 
our study. A sample of the NGDC catalogues used in our work 
is shown in Fig. 1.

The NGDC sunspot catalogue holds records of sunspot 
groups supplying their location, time, physical properties and 
classification data. Two classification systems exist for 
sunspots: McIntosh and Mt. Wilson. McIntosh classification 
depends on the size, shape and spot density of sunspots, while 
the Mt. Wilson classification [1] is based on the distribution of 
magnetic polarities within spot groups [2]. The McIntosh 
classification is the standard for the international exchange of 
solar geophysical data. It is a modified version of the Zurich 
classification system developed by Waldmeir. The general 
form of the McIntosh classification is Zpc where, Z is the 
modified Zurich class, p is the type of spot, and c is the degree 
of compactness in the interior of the group. Mt. Wilson 
classification consists of letters taken from the Greek alphabet 
from alpha to delta and their different combination.

Fig. 1. A sample of the NGDC sunspots and flares catalogues

III. THE MACHINE LEARNING ALGORITHM

In this work, Cascade-Correlation Neural Networks 
(CCNNs) are used for flare prediction. CCNNs are used 
because of their efficient performance in applications involving 
classification and time-series prediction [3]. In our previous 
work [4] the performance of several NN topologies and 
learning algorithms was compared and it was concluded that 
CCNN provides better association between solar flares and 
sunspot classes. A full comparison between the prediction 
performances for CCNN, Support Vector Machines (SVM) and 
Radial Basis Function Networks (RBFN) is carried out in our 
recent work [5].

A. Cascade-Correlation Neural Networks (CCNNs)
The training of Backpropagation neural networks is 

considered to be slow because of the step-size problem and the 
moving target problem [6]. To overcome these problems 
cascade neural networks were developed. The topology of 
these networks is not fixed. The supervised training begins 
with a minimal network topology. New hidden nodes are added 
gradually to create a multi-layer structure. The new hidden 
nodes are added to maximize the magnitude of the correlation 
between the new node’s output and the residual error signal we 
are trying to eliminate. The weights of every new hidden node 
are fixed and never changed, hence making it a permanent 
feature-detector in the network. This feature detector can then 
produce outputs or create other more complex feature detectors 
[6]. 

In a CCNN, the number of input nodes is determined based 
on the input features, while the number of output nodes is 
determined based on the number of different output classes. 
The learning of CCNN starts with no hidden nodes. The direct 
input-output connections are trained using the entire training 
set with the aid of the backpropagation learning algorithm. 
Hidden nodes are then added gradually and every new node is 
connected to every input node and to every pre-existing hidden 
node. Training is carried out using the training vector and the 
weights of the new hidden nodes are adjusted after each pass
[6]. 

However, a major problem facing these networks is over-
fitting the training data, especially when dealing with real-
world problems [7]. Over-fitting usually occurs if the training 
data are characterized by many irrelevant and noisy features 
[8].On the other hand, the Cascade-Correlation architecture has 
several advantages. Firstly, it learns very quickly, at least 10 
times faster than Back-propagation algorithms [9]. Secondly, 
the network determines its own size and topology and it retains 
the structures it has built even if the training set changes [6]. 
Thirdly, it requires no back-propagation of error signals 
through the connections of the network [6]. Finally, this 
structure is useful for incremental learning in which new 
information is added to the already trained network [9]



IV. IMPLEMENTATION AND RESULTS

A. The Association and the Pre-Training Processes
For the training process, we have investigated all the sunspot 

groups that were associated with flares from 01 Jan1992 till 31 
Dec 2006. The degree of association was determined based on 
the NOAA region number and the timing information. We have 
created a computer platform using C++ that would 
automatically access and extract information from the NGDC 
sunspot and flare catalogues. Our software has analysed the 
data related to 30683 flares and 111648 sunspots and has 
managed to associate 1450 M and X flares with their 
corresponding sunspot groups. 

Theoretically, the total number of samples used for our 
training should be in the range of 2900 samples, where 1450 
samples represent flaring features and the remaining 1450 
samples representing non-flaring features. The flaring data 
represents the classifications and timing information of 
sunspots that produced flares. The remaining samples represent 
sunspots that existed in non-flaring days and are not related to 
any sunspot groups within the previous flaring sunspot samples 
together with their timing information. However, we have 
decided to exclude the samples corresponding to the period of 
01 July 2003 till 31 Dec 2003 to provide an additional test to 
whether our prediction system can successfully predict the 
occurrence of the Halloween flares. The number of excluded 
flaring samples is 76. Hence, a similar number of non sampling 
features is also excluded. This means that the total number of 
training samples has been reduced to 2748.   

All the machine learning training and testing experiments are 
carried out with the aid of the Jack-knife technique [10]. This 
technique is usually implemented to provide a correct statistical 
evaluation for the performance of the classifier, when 
implemented on a limited number of samples. This technique 
divides the total number of samples into 2 sets: a training set 
and a testing set. Practically, a random number generator 
decides which samples are used for the training of the classifier 
and which are kept for testing it. The classification error 
depends mainly on the training and testing samples. For a finite 
number of samples, the error counting procedure can be used to 
estimate the performance of the classifier [10]. In each 
experiment, 80% of the samples remaining after excluding the 
76 samples described above, are randomly selected and used 
for training while the remaining 20% are used for testing. 
Hence, the number of training samples is 2198, while 550 
samples are used for the testing of the classifier. Keeping in 
mind that some samples are deliberately excluded, this means 
that the learning system is trained only with 75.8% of the total 
number of associated samples.

B. The training Vectors
For each sample, the training vector consists of 6 numerical 

values that belong to two sets: the input set and the target set. 
The input set contains 4 values, while the remaining two values 
belong to the output set. The first three values of the input set 
represent the sunspot McIntosh classification, while the last 
numerical value represents the simulated sunspot number 
which is generated based on Hathaway’s model [11] for the 

given dates. The three McIntosh classification values are the 
modified Zurich class, type of largest spot and the sunspot 
distribution. On the other hand, the target set consists of two 
values representing whether a flare is likely to occur and 
whether it is an X or M flare. 

C. Optimising the CCNN 
In general, learning algorithms are optimised to ensure that 

their best performances are achieved. In [4], it was proven that 
CCNN provides the optimum neural network performance for 
processing catalogues data and in [5] it was shown that a 
CCNN with 6 hidden nodes in the first layer and 4 hidden 
nodes in the second layer provides the best results for Correct 
Flare Prediction (CFP) and Correct Flare Type Prediction 
(CFTP). This topology is used in this work. 

D. Practical Experiments:
Two sets of testing experiments are carried out in this work. 

As explained earlier, the training stage for all experiments is 
carried out with only 75.8% of the total number of associated 
samples. For the first experiment, all the training and testing 
experiments are carried out based on the statistical Jack-knife 
technique. For every experiment the Jackknife technique is 
applied once to obtain the random training and testing sets. Ten 
experiments are carried with random samples representing the 
input and output features. For all the experiments the number 
of random training samples used is 2198. The remaining 550 
samples are used for the testing of the classifier in the first 
experiment, while the 76 samples corresponding to the period 
from 01 July 2003 till 31 Dec 2003 and containing the samples 
for the Halloween storm are used for the second experiment. 
The results for training times, CFP and CFTP for the first and 
second experiments are shown in Table I and Table II, 
respectively.

As it can be seen from Table I, CCNN requires short training 
times and it provides high CFP rate for the short-term 
prediction of significant flares. The CFTP rate is slightly lower 
and we will be exploring more machine learning techniques in 
the future to increase its reliability. 

TABLE I
PRACTICAL RESULTS FOR THE FIRST EXPERIMENT

Experiments Training Time (Sec) CFP CFTP

1 41.3 0.927 0.909

2 39.3 0.916 0.878

3 39.1 0.916 0.878

4 39.3 0.913 0.878

5 39.4 0.913 0.878

6 39.6 0.933 0.898

7 39.7 0.916 0.889

8 40.4 0.924 0.871

9 40.9 0.907 0.867

10 41.1 0.931 0.898

Average 40.0 0.920 0.885



TABLE II
PRACTICAL RESULTS FOR THE SECOND EXPERIMENT 

Experiments Training Time (Sec) CFP CFTP

1 45.4 0.931 0.896

2 40.4 0.915 0.871

3 41.4 0.925 0.884

4 41.8 0.909 0.875

5 40.7 0.905 0.876

6 40.6 0.922 0.884

7 40.7 0.909 0.860

8 40.7 0.922 0.882

9 40.9 0.918 0.887

10 41.2 0.925 0.896

Average 41.4 0.918 0.881

It is worth mentioning that most of the major flares that 
occurred during the Halloween storm were associated with 
NOAA region 10486 such as: the X17.2 on 28th Oct 03, the 
X10 on 29th Oct 2003, the X8.3 on 2nd Nov 2003 and the X28 
on 4th Nov 2003. All these flares are successfully predicted by 
our system. 

V. CONCLUSIONS

In this work, we have used the publicly available solar 
catalogues from the National Geophysical Data Centre to 
associate the reported occurrences of M and X solar flares with 
the relevant sunspots that were classified manually and exist in 
the same NOAA region prior to flares occurrence. We have 
processed 30683 flares and 111648 sunspots between 01 Jan 
1992 and 31 Dec 2006 and managed to associate 1450 M and 
X flares with their corresponding sunspot groups. To provide 
further testing we have excluded 76 samples between 01 July 
2003 and 31 Dec 2003 to provide an additional test to whether 
our prediction system can successfully predict the occurrence 
of the Halloween flares. The knowledge embedded in the 
associated samples is extracted using the machine learning 
system that we have introduced here and represented in terms 
of learning rules that can be easily interpreted and applied by 
computers. These learning rules are the corner stone for the 
automated real-time system that we have introduced here for 
the prediction of significant solar flares. Extensive experiments 
using the Jack-knife technique are applied to evaluate the 
prediction performance of this system. The system is also 
tested on sunspots data belonging to the Halloween storm of 
2003. Accurate and reliable performance is obtained for both 
testing experiments, as shown in Tables I and II.

Currently we are working on enhancing our association 
system so that it could extract the development, life cycle and 
age of every associated sunspot and then feed this information 
to the classifiers to enhance the overall prediction performance.
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