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Abstract- Solar imaging is currently an active area of 
research. A fast hybrid system for the automated detection 
and classification of sunspot groups on MDI Continuum 
images using active regions data extracted from MDI 
Magnetogram images is presented in this paper. The 
system has three major stages: sunspots detection from 
MDI Continuum images, sunspots grouping and McIntosh 
classification of sunspot groups. Image processing and 
machine learning are integrated in all these stages. 

I. INTRODUCTION

The importance of space weather is increasing day after day 
because of the way solar activities affect life on Earth as we 
rely more and more on different communication and power 
systems. Induced electric fields and currents can affect the 
normal operation of ground-systems such as, high voltage 
power transmission grids, pipelines, telecommunications cables 
and railway signaling. Wireless communications systems and 
satellites also suffer from these activities. 

The solar activity is the driver of space weather. Thus it is 
important to be able to predict the violent solar eruptions such 
as coronal mass ejections (CME) and solar flares[1]. According 
to reference [2],“The most important social and economic 
aspects of space weather are related to being aware of and 
possibly avoiding the consequences of space weather events 
either by system design or by efficient warning and prediction 
systems allowing for preventive measures to be taken”. 
Eruptions on the Sun travel to Earth in about 8 minutes in 
forms of light, radio waves, or X-rays. However the electrically 
charged particles from the Sun’s eruptions are the actual cause 
of the magnetic storms and they take many hours to a few days 
to reach Earth. Thus, proper warning of magnetic storms on 
Earth can be initiated if proper instruments to observe the Sun, 
the intervening space, and the Earth’s magnetic field, are 
combined with efficient data processing techniques.

Previous research on solar flares showed that they are mostly 
related to sunspots and active regions [3], [4], [5], [6], [7]. 
Sunspots are part of active regions, and their local behavior is 
used for the forecast of solar activity [8].

In this work we present a system that uses SOHO/MDI 
continuum and magnetogram images to detect, group, cluster 

and then classify sunspots based on the McIntosh classification 
system [7].  The development and behavior of these groups is 
important to determine whether they may cause significant 
flares or not. This process is mainly manual and subjective, 
which means that it is a labor intensive and time consuming 
process and its accuracy depends on the experience of the 
human analyst. There is an apparent need for automated 
systems that can process solar data to extract useful knowledge 
and provide reliable predictions for the possible occurance of 
solar activities that may affect us on Earth. The need is more 
obvious if we are consider that the rate of solar data acquisition 
will shortly increase by more than 1000 times because of the 
very recent space missions (HINODE and STEREO) and the 
future space missions (SDO).

Previous attempts for the detection of sunspots are reported 
in [9] [10], and [11]. In [10] an automated system for the 
detection of sunspots on the Ca K1 and SOHO/MDI white light 
images was presented and a detection rate of 98% was 
achieved for MDI images when compared with the detection 
results of Locarno Solar Observatory. In [11], image 
processing, and clustering methods were applied to 
SOHO/MDI white light images for the recognition and 
classification of sunspots according to the modified Zurich 
class of McIntosh system. Testing involved 128 sunspot 
groups.  Although 100% correct classification rate was 
achieved for the modified Zurich classes C and H (25% of test 
data), only got 60%, 19% and 21% correct classification rates 
for D,E and F were obtained  respectively. Full disk white light 
images were used in [9] to automatically detect and cluster 
sunspots into groups using morphological imaging. Neural 
networks were used to classify them. However, no good results 
were reported for grouping. 

Previous research shows that accurate detection of sunspots 
has been achieved on white light solar images. However, no 
good results for the grouping and clustering of sunspots were 
reported. This is the biggest challenge facing the creation of an 
accurate and automated sunspot classification system [11], [9].

This paper is organized as follows: The automated detection 
and grouping of sunspots is introduced in Sec. II. The 
classification of sunspot groups is described in Sec. III, while 
the results and the concluding remarks are given in Sec. IV.



II. SUNSPOT DETECTION & GROUPING
Several stages are involved in the detection and grouping of 

sunspots, such as: preprocessing, initial detection of features 
(sunspots and active regions) and clustering (Fig.1). All these 
stages are described below.

A. Pre-processing 
The pre-processing is divided into two stages. The first stage 

is applied to continuum and magnetogram images and is called 
Stage-1 processing. This stage is described below:
 Apply the filtering process reported in [12] to detect the 

solar disk, determine its radius, center and to create a 
mask. Using this mask, remove any irrelevant information.

 Calculate the Julian date and solar coordinates (the 
position angle, heliographic latitude, heliographic 
longitude) for the image using the equations of [13].

 Stage-2 processing is applied only to magnetogram images 
and it is important because it enables us to correlate both MDI 
images. Usually there is a time difference (mostly less than 30 
minutes) between magnetogram and continuum images, and 
the size of the solar disk on both images could differ. These
problems has to be tackled to align and then correlate these 
images. To achieve this, magnetogram images need to be 
resized so that both images share the same center and radius. 
The time difference is equalized as follows:
 Map the magnetogram image from Heliocentric-Cartesian 

coordinates to Carrington Heliographic coordinates [14].
 Re-map the image to Heliocentric-Cartesian coordinates 

[14]. Use center, radius and solar coordinates of the 
continuum image as the new center, radius and solar 
coordinates of the magnetogram image.

B. Initial Feature Detection 
Initial detection of sunspots from continuum images and 

active regions from magnetogram images is carried out using 
intensity filtering and region growing methods, in a manner 
similar to  reference [12]. 

The intensity filtering threshold value (Tf ) for each image is 
found automatically using (1), where, µ is the mean, 
represents the standard deviation, and  is a constant that is 
determined empirically based on the type of the features to be 
detected and images.

fT  = ( )                                        (1)

In order to detect sunspot candidates from continuum images 
(Fig. 2.D):
 Apply histogram stretching to continuum image.
 Apply Gaussian filtering to resulting image. 
 Apply intensity filtering using a threshold value calculated 

(1) with the minus (-) sign and 2.5 as the value of . If the 
value of pixel on image is less than the threshold value, 
mark it as sunspot candidate. 

In order to detect active region candidates from 
magnetogram images (Fig. 2.C):
 The first threshold value is determined using (1) with a 

plus sign (+) and  equals two. All pixels that have 
intensity values larger than this threshold are marked as 
active region seeds with “north” polarity.

Fig. 1. Continuum and Magnetogram Images after preprocessing stage. A is the 
magnetogram and B is the Continuum image. C is the resulting magnetogram 

image after stage-1 and stage-2 processing. D is the resulting continuum image 
after stage-1 processing.

 In the same manner, the second threshold is determined 
using (1) with the minus (-) sign and  equals two. Any 
pixel with an intensity value less than this threshold is 
marked as an active region seed with “south” polarity. 

 Apply a simple region growing algorithm. Place a 9 ×9 
window on every seed and mark every pixel inside this 
window that has a similar intensity to the seed’s intensity 
(± 20%) as an active region candidate.

C. Sunspot Grouping (Clustering) 
After detecting the initial candidates for sunspots and active 
regions, the resulting images are combined to cluster sunspots 
into groups. Using this method the exact locations of the active 
regions and sunspots are determined and grouped. This method 
can be summarized as follows:  
 Get a pixel marked as a candidate (Pspotcan) on the sunspot 

candidate image (Fig. 2.D):
 If the active region candidate image (Fig. 2.C) has an 

active region candidate (Pactcan) at the same location, create 
a new image for active regions and mark it as an active 
region (Pact ) with the same pixel value (dark or bright) of 
Pactcan and continue processing, otherwise return to the first 
step for processing another Pspotcan.

 Place a circle on Pact with “ ” degree radius on the active 
region candidate image and mark all the Pactcan within this 
circular region as Pact on the newly created active region 
image. In this work, the value of   is determined 
empirically and it equals 10. 



Fig. 2. Initial feature detection and grouping stages.

 Marked regions with the same color will be considered to 
belong to the same active region and these regions will be 
combined by filling the gaps between them.

 Finally this image will be ANDed with the original 
sunspot candidate image to group the detected sunspots. In 
the final image every sunspot belonging to the same group 
will have the same intensity values.

We used Neural Networks (NN) to combine regions of 
opposite magnetic polarities in order to determine the exact 
boundaries of sunspot groups. NN is applied to two opposite 
polarity regions to decide if they are part of the same active 
region or not. 
NN training vector consists of seven inputs and one output 

showing the relation between each opposite polarity magnetic 
field pairs. The calculations required for inputs and outputs for 
the NN are given in Table I, where, Aa, Ab are the areas in 
pixels for each region, d is the distance between the two 
regions in heliographic degrees, dlon, dlat are the longitude and 
latitude difference between the two regions and Iab  is the 
intersecting area between the two regions in pixels. The 
training vector is constructed using nearly one hundred 
examples. Several experiments are carried to optimize the NN 
in a manner similar to [15]. It was found that the best learning 
performance is obtained with back propagation training 
algorithm and using the following NN topology: 7 input nodes, 
one hidden layer with 8 nodes and one output node.



TABLE I
INPUTS AND OUTPUT FOR NN TRAINING VECTOR FOR ACTIVE REGION DECISION

INPUTS DESCRIPTION
Min(Aa , Ab ) / Max(Aa ,

Ab )
Ratio of the smallest area to biggest area of 

regions

Iab / Aa
Ratio of intersecting area to area of first 

region

Iab / Ab
Ratio of intersecting area to area of second 

region

dlon / d
Ratio of the longitude difference between 

regions to distance between regions

dlat / d
Ratio of the latitude difference between 

regions to distance between regions

d / 180
Ratio of distance between regions to 180 

degrees.

0.1 or 0.9
If two regions are intersected by same 

sunspot candidate it is 0.9 otherwise 0.1. 
OUTPUT DESCRIPTION

0.1 or 0.9
If two regions are part of the same active 

regions it is 0.9 otherwise 0.1

After deciding the active regions and sunspots, the spots 
belonging to same groups are marked as detected groups (Fig. 
2 image G). All the stages after pre-processing are shown in 
Fig.2. The detected groups are processed further for 
determining their McIntosh classes.

III. MCINTOSH CLASSIFICATION OF SUNSPOT GROUPS

After grouping the detected sunspots, each sunspot group is 
classified based on the McIntosh classification system which is 
the standard for the international exchange of solar geophysical 
data. The classification depends on the size, shape and spot 
density of sunspots. It is a modified version of the Zurich 
classification system, which has improved definitions and 
added indicators of size, stability and complexity [7]. The 
general form of the McIntosh classification is Zpc where, Z is 
the modified Zurich class, “p” is the type of penumbra on 
largest spot, and “c” is the degree of compactness in the 
interior of the group. 

A. Computing the Modified Zurich Class - Z
The modified Zurich classes are defined depending on the 
polarity of sunspot group, presence of penumbra, distribution 
of the penumbra, and the length of the sunspot group [7]. To 
compute the Modified Zurich Class the following factors are 
considered:
 Determine if the group is Unipolar or Bipolar.
The polarity of sunspot groups is decided according to the 
separation between sunspots within the group. If there is a 
single spot or compact cluster of spots in a group and the 
greatest separation is smaller than 3 degrees, the group is 
considered to be Unipolar; if the separation is higher the group 
is considered to be bipolar.
 Determine if a penumbra exist in any of the spots.
In white light images, large sunspots have a dark central umbra 
surrounded by the brighter penumbra, and small spots have a 
dark central umbra surrounded by a dark penumbra. In order to 
decide if a sunspot has penumbra or not we apply equation (2) 
to find its threshold, where,  is the mean,   represents the 

standard deviation of all the spots on the image, PN is the total 
number of pixels for the spot under consideration , and PT is 

the total number of pixels for all spots on the image.

NT  = ( / )N TP P                                       (2)

If the sunspot pixel is smaller than this threshold value TN, it is 
considered as part of the umbra, otherwise it is considered to 
belong to the penumbra (Fig. 3).
 Determine if the spots with the penumbra are located on 

one end or both ends.
For deciding this all the sunspots are sorted from east to west 
depending on their central longitudes. The first and last 
sunspots within the sunspot group are searched to determine 
whether they have a penumbra or not.
 Calculate the length of the group in absolute heliographic 

degrees. 
After finding all the necessary data, the modified Zurich class 
for the sunspot group is found using a decision tree.

Fig. 3. Results of calculating the penumbra and the umbra of the spot. A is the 
original image, B is the zoomed area from A, and C is the output showing 

umbra of the spots with black and penumbra of the spots  with grey.  

B. Computing the Type of Largest Spot Class - p
The largest spot in a sunspot group can be classified depending 
on its type, size and symmetry of the penumbra [7]. The 
penumbra can either be rudimentary (partially surrounds the 
umbra) or mature (completely surrounds the umbra). Its size is 
the value of the north to south diameter. Symmetry of the 
penumbra depends on the irregularity of the outline of the 
penumbra (Fig. 4). The size of the spot can be easily calculated 
by finding the difference between its north and south latitudes. 
However, finding the symmetry and type of penumbra is a real 
challenge because it depends mostly on the subjective 
judgment.  In order to determine the type of largest spot:
 Decide if the penumbra of the largest spot is rudimentary 

or not.
The Type of the penumbra is decided by calculating the ratio of 
penumbra and umbra pixels in a group. If the number of 
penumbra pixels is more than umbra pixels, the sunspot is 
assumed to have a mature penumbra; otherwise penumbra is 
assumed to be rudimentary.
 Decide if the penumbra of the largest spot is symmetric or 

not.
Apply horizontal and vertical integral projections to the 
sunspots. The vertical integral is computed by finding the 
average energy contained in every row, while the horizontal 
integral is computed by finding the average energy of each 
column. After projections are applied, energy of each column 
and each row are compared with the energy of adjacent 



columns and rows in order to find the minima and maxima in 
the energy spectra. This provides accurate detection for every 
umbra within the penumbra. Compare the numbers of 
horizontal and vertical umbra peaks. The sunspot is assumed to 
be symmetric, if the number of peaks on both projections is 
equal to one, otherwise it is assumed to be asymmetric. 
 Calculate the value of the north to south diameter in 

heliographic degrees.
After finding all the necessary data, they are applied to a 
decision tree to find the type of largest spot class in the sunspot 
group. 

A B

Fig. 4.  A Symmetric sunspot, B Asymmetric sunspot.

C. Computing Sunspot Distribution – c
The sunspot distribution depends on the compactness of the 
sunspot group [7]. In order to determine the distribution of 
sunspots:
 Determine the compactness of sunspots within the group.
Calculate the ratio of the total sunspots area to the sunspot 
group area. If this ratio is less than 40% then the sunspot group 
is assumed to be “open” [7].
 Determine if there exist a spot with a mature penumbra in 

the group besides the leader and the follower.
If there is a spot with mature penumbra besides the leading and 
ending spots of the sunspot group, then the group is assumed to 
be “compact” otherwise “intermediate”.

IV. RESULTS AND CONCLUSIONS

A computer platform using C++ .Net was created for the 
automated detection and classification of sunspots using 
SOHO/MDI continuum and magnetogram images in GIF 
format. A publicly available library: “corona.dll”1 is used for 
reading all the GIF images. The program for training and 
applying the NN is also created and implemented in C++. The 
whole system works with 1024 × 1024 images and the 
detection of sunspots, detection of active regions and
classification of sunspot groups takes approximately four
seconds per image depending on the complexity of features, 
using P4-2.8 GHz PC with 1 GB RAM. 

The detection, grouping and classification algorithms are 
tested on a total of 31 intensitygram and 31 magnetogram 
images mostly available from 01/01/2006 to 01/02/2006 and 
some individual images with complex sunspot groups for better 
verification of the algorithms. 

The output from our system is compared to a total of 96
sunspot groups which are manually detected and classified with 
the help of the publicly available sunspot catalogues from 
NGDC/USAF that are created by solar physicists from 

                                                
1 http://corona.sourceforge.net/

different observatories. 
Our algorithms managed to detect 105 groups and 89 of 

them matched the manually extracted groups. This means that 
there is nearly a 92% correct match for sunspot groups and 
15% of the groups that are detected by our algorithms are not 
present on the manually detected groups. Almost all the
sunspot groups that are not present are the sunspot groups with 
only one or two sunspots. 

Although almost 99% of the detected sunspots are correct, 
we found that there are some miss detections of very small 
sunspots. All the initial sunspot candidates are compared with 
their corresponding magnetic activity on magnetograms 
images. This reduces the probability for wrong detection of 
sunspots.  This also shows that most of the error is caused by 
wrong grouping of our algorithms and/or miss detections of 
sunspots by solar experts. 

Our algorithms have clustered some sunspots into separate 
groups despite the fact that they belong to the same group. This 
applies in particular to sunspots that are separated by large 
distances compared to their areas. This causes their magnetic 
traces to be separate from each other and as a result the NN 
clusters them as separate groups. Sometimes two or three small 
sunspots that are part of the same group can be clustered as two 
different sunspot groups which explains some of the wrong 
grouping. 

Also, the lack of visibility by ground observatories at the 
time of sunspots detection and human error (Some small 
sunspots are very hard to determine by human eye) can cause 
the miss detections of sunspots. Furthermore, sunspots forming 
or deforming can be hard to notice. We came across some 
examples, where some sunspot groups are detected by our 
system in their early development stage and are not reported in 
the sunspots catalogues till they have matured a little.

An example for grouping and miss detection on 
NGDC/USAF catalogue is shown on Fig. 5.  In this figure, the 
detected groups, and classification results from our algorithms 
under the automatic classification headline and classification 
results from NGDC/USAF catalogue is given.  Our algorithms 
detected four sunspot groups on the image 04/04/2006 taken at  
08:00, the closest classification on the available USAF sunspot 
catalogue is at 08:35 by San Vito observatory. This observatory 
detected three sunspot groups and the newly forming group (2) 
that is detected by our algorithms is not one of them. This 
group is only available on the sunspot groups detected nearly 9 
hours later by Holloman AFB observatory classified as BXO. 
This group will be counted as wrong grouping on our test 
results although it is proven that it is correct by the next 
observation results.   

Out of the 89 matched sunspot groups, the correct 
classification rates for modified Zurich class (Z), type of 
largest spot (P), and group distribution (C) are 79.7% (71
correct), 47.1% (42 correct), and 84.2% (75 correct), 
respectively.  Although the modified Zurich class ratio and 
group distribution ratio results are satisfactory, we can not say 
the same thing for the type of the largest spot ratio. Deciding 
the type of the largest spot is a very hard task, even for an 
experienced solar physicist because it involves subjective 



judgment on the degree of symmetry and maturity. 
For future work, we would like to improve the classification 

rates, especially for determining the type of the largest spot. 
This can be achieved by using machine learning techniques for 
deciding the symmetry and type (mature or rudimentary) of 
penumbra.

We would also like to classify the sunspot groups according 
to Mt. Wilson classification which can be done with higher 
accuracy when we take into account that the polarity of each 
sunspot can be easily be determined from magnetogram 
images. Our major aim is to  combine the output data from this 
system with a machine learning system, as described in [15] to 
provide an automated platform for the short-term prediction of 
major solar flares using neural networks and/or support vector 
machines .

Fig. 5.  Results of sunspot grouping and comparison of automated 
classification with classification from observatories.
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