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Abstract. An automated neural network-based system for predicting solar 
flares from their associated sunspots and simulated solar cycle is introduced. A 
sunspot is the cooler region of the Sun's photosphere which, thus, appears dark
on the Sun's disc, and a solar flare is sudden, short lived, burst of energy on the 
Sun's surface, lasting from minutes to hours. The system explores the publicly 
available solar catalogues from the National Geophysical Data Center to associ-
ate sunspots and flares. Size, shape and spot density of relevant sunspots are 
used as input values, in addition to the values found by the solar activity model
introduced by Hathaway. Two outputs are provided: The first is a flare/ no flare 
prediction, while the second is type of the solar flare prediction (X or M type 
flare). Our system provides 91.7% correct prediction for the possible occur-
rences and, 88.3% correct prediction for the type of the solar flares.
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1 Introduction

The term "space weather" refers to adverse conditions on the Sun that may affect 
space-borne or ground-based technological systems and can endanger human health 
or life [1].The importance of space weather is increasing day after day because of the 
way solar activities affect life on Earth and it will continue to increase as we rely 
more and more on different communication and power systems. The established ef-
fects of space weather activities on our daily lives can be summarized as follows:

Ground based systems: Induced electric fields and currents can disrupt the normal 
operation of high voltage power transmission grids, pipelines, telecommunications 
cables, metallic oil and gas pipelines and railway signaling [2].  The great geomag-
netic storm of March 13, 1989 closed down the entire Hydro Quebec system [3]. [4]
predicted that a credible electric power outage could result in a direct loss to the US 
Gross Domestic Product of $3 - $6 billion. [5] predicted that timely forecasts could 
save the US power industry $365M per year. 

Communications systems: Wireless communications systems suffer from interrup-
tion of service like frequency jamming and dropped communications due to radio 
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bursts caused by solar microwave emissions [6]. Solar activities can produce X-rays 
that disrupt point-to-point high frequency radio communications and radio noise that 
interferes with communications and radar systems [7].

Space based systems: Adverse space weather conditions can cause anomalies and 
system failures and increased drag on the movement of satellites and spacecraft lead-
ing to slow-downs, changes in orbits and shorter life-times of missions. Other radia-
tion hazards include direct collision damage and/or electrical defects, caused by 
charged particles [8]. On 19 May 1998, the PanAmSat Corporation’s Galaxy 4 satel-
lite experienced a failure in its altitude-control system, leading to the suspension of 
paging service for 45 million people [9]. 

There have been noticeable developments recently in solar imaging and the auto-
mated detection of various solar features, by: [10], [11], [12], [13], [14] and 
[15].Despite the recent advances in solar imaging, machine learning and data mining 
have not been widely applied to solar data. [16] described a method for the automatic 
detection of solar flares from optical H-alpha images using the multi-layer perceptron 
(MLP) with back-propagation training rule. In [17], the classification performance for 
features extracted from solar flares is compared using Radial Basis Functions (RBF), 
Support Vector Machines (SVM) and MLP methods. Each flare is represented using 
nine features. However, these features provide no information about the position, size 
and verification of solar flares. Neural Networks (NNs) were used in [18] for filament 
recognition in solar images. However, machine learning algorithms are still not ap-
plied properly for the automated prediction of solar flares and space weather activi-
ties. This is a very challenging task because of the following reasons:
 There are an increasing number of space missions and ground based observatories 

providing continuous observation of the Sun at many different wavelengths. We 
are becoming “data rich” but without automated data analysis and knowledge ex-
traction techniques, we continue to be “knowledge poor”. 

 A long standing problem in solar physics is establishing a correlation between the 
occurrence of solar activity (e.g., solar flares and coronal mass ejections (CMEs)) 
and solar features (sunspots, active regions and filaments) observed in various 
wavelengths.

 An efficient prediction system requires the successful integration of solar physics,
machine learning and maybe solar imaging.

 There is no machine learning algorithm that is known to provide the “best” learn-
ing performance especially in the solar domain. In most cases, empirical studies, in 
a manner similar to [17], must be carried out to compare the performances of these 
algorithms before the final decision on which learning algorithm to use can be 
made.
A first attempt in addressing these challenges is reported in the recent work of [19]

where different neural network (NN) topologies were studied to determine the best 
NN topology to process sunspots and associate them with solar flares. The findings of 
this work are used in this paper to address the challenges highlighted above. In gen-
eral, we aim to investigate the degree of correlation between sunspot classes and the 
occurrence of solar flares that can affect our life on Earth using neural networks and 
timing information that represent the solar activity.

This paper is organized as follows: the data used in this paper is described in Sec-
tion 2. The NN topology is discussed in Section 3. Section 4 is devoted to the practi-
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cal implementation and the evaluation of the performance. Finally, the concluding 
remarks are given in Section 5.

2 Data

2.1 Sunspots and Flare Catalogues

A sunspot is the cooler region of the Sun's photosphere which, thus, appears dark 
on the Sun's disc, and a solar flare is sudden, short lived, burst of energy on the Sun's 
surface, lasting from minutes to hours. Solar flare research has shown that flares are 
mostly related to sunspots and active regions [20],[21], [22]. There are many publicly 
available catalogues which includes the information about flares and sunspots oc-
curred in the past.

The sunspot group catalogue and solar flare catalogue are used from the National 
Geophysical Data Center (NGDC) [23] for this research. Flare catalogue includes data 
for all type of detected class flares. Flares are classified according to their x-ray 
brightness in the wavelength range from 1 to 8 Angstroms. C, M, and X class flares 
can effect earth. C-class flares are moderate flares with few noticeable consequences 
on Earth (i.e., minor geomagnetic storms). M-class flares are large; they generally 
cause brief radio blackouts that affect Earth's Polar Regions by causing major geo-
magnetic storms. X-class flares can trigger planet-wide radio blackouts and long-
lasting radiation storms. This catalogue supplies information about dates, starting and 
ending times, location, the National Oceanic and Atmospheric Administration
(NOAA) number of the corresponding active region and x-ray classification of de-
tected flares. NOAA numbers active regions consecutively since January 5, 1972 as 
they are observed on the Sun. An active region must be observed by two different ob-
servatories before it is given a number or a flare must be observed to occur in it [24].
Not all the flares have their related NOAA number, so in this study only flares with 
associated NOAA numbers are included. 

NGDC hold records of sunspot groups reported from several observatories from all 
around the world, supplying their location, time, physical properties and classification 
data. Two classification systems exist for sunspots: McIntosh and Mt. Wilson. 
McIntosh classification depends on the size, shape and spot density of sunspots, while 
the Mt. Wilson classification [25] is based on the distribution of magnetic polarities 
within spot groups [26]. The McIntosh classification is the standard for the interna-
tional exchange of solar geophysical data. It is a modified version of the Zurich classi-
fication system developed by Waldmeir. The general form of the McIntosh classifica-
tion is Zpc where, Z is the modified Zurich class, p is the type of spot, and c is the 
degree of compactness in the interior of the group. Mt. Wilson classification consists 
of letters taken from the Greek alphabet from alpha to delta and their different combi-
nation. 
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2.2 Solar Cycle Prediction Data 

Besides the flare and sunspot group associations, ‘monthly average sunspot number’ 
generated using Equation 1 from [27] as a part of the NN inputs. The comparison of 
real and generated ‘monthly average sunspot number’ for a given date is given in Fig. 
1. The values generated by Equation 1 are more suitable for our research instead of 
historical data because with this Equation we can generate predicted ‘monthly average 
sunspot numbers’ and use it in our trained NN system. In Equation 1, parameter a
represents the amplitude and is related to the rise of the cycle minimum, b is related to 
the time in months from minimum to maximum; c gives asymmetry of the cycle; and
to denotes the starting time. More info about Equation 1 can be found in [27].

(1)
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Fig. 1. The comparison of real and generated ‘monthly average sunspot number’ between 1992 
and 2005.

3 The Topology and Design of NN

The NN has proven to be a very good tool for solving many real-life problems. The 
efficient implementation of the NN requires training sessions that depends on the 
training vector and on the topology of the NN. The NN manages to converge if the 
training data are adequate to create the appropriate discriminations between the dif-
ferent output classes. The topology of the NN also plays an important role in the train-
ing process. If the network topology is too small then most properly the network will 
not be able to converge. On the contrary, if the network is too large and the training 
examples are presented many times, the network focuses on the singular statistical 
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characteristics of the training set and looses its generalization ability. A network 
should be large enough to learn and small enough to generalize [28], [29]. The train-
ing is improved if the NN is optimized. A NN is optimized if the best hidden layer 
nodes and the optimum learning time are reached [30]. In general, two hidden layers 
are sufficient to perform any classification task although real-life problems are often 
much simpler and can be solved with a single hidden layer [31]. However, once 
trained the NN provides fast response. 

In [19], several NN topologies were evaluated and it was  found that the cascade 
forward NN with backpropagation training provides the best performance in terms of 
convergence time, optimum network structure and recognition performance. In cas-
cade forward NN, the first layer has weights coming from the input and each subse-
quent layer has weights coming from the input and all previous layers.  

4 Practical Implementation

4.1 The Training Process

The associated flare and sunspot group data, from 01/01/1992 to 31/12/2005 are used 
for training. The degree of correspondence between flares and sunspots was deter-
mined based on their NOAA region number and time. The software we created man-
ages to associate 1425 M and X flares and sunspot groups out of 29343 flares and 
110241 sunspot groups. The total number of samples is 2882, where 1425 samples 
represent sunspots that produced flares and the remaining samples represent the dis-
tinct sunspots that existed in non-flaring days and not related to any sunspot groups 
within the previous flaring sunspot samples.

For each sample, the training vector consists of 6 elements and is divided into 2 
parts: input and target. The input part has 4 values representing McIntosh classifica-
tion (3 values) of sunspots and the simulated number of monthly average sunspots 
number generated based on the Hathaway’s model [27]. The 3 values for McIntosh 
classification are modified Zurich class, type of largest spot and the sunspot distribu-
tion. The target part consists of 2 values. The first target value is used to predict 
whether the sunspot is going to produce a flare or not. The other target value is used 
to determine whether the predicted flare is an X or M class flare. 

4.2 Evaluating the performance

The NN training and testing was carried out based on the statistical Jackknife tech-
nique, which is usually implemented to provide a correct statistical evaluation for the 
performance of the classifier, when implemented on a limited number of samples. 
This technique divides the total number of samples into 2 sets: a training set and a 
testing set. Practically, a random number generator decides which samples are used 
for the training of the NN and which are kept for testing it. The classification error 
depends mainly on the training and testing samples. For a finite number of samples, 
the error counting procedure can be used to estimate the performance of the classifier 
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[32]. In each experiment, 80% of the samples were randomly selected and used for 
training while the remaining 20% were used for testing. Hence, the number of sam-
ples used in the training is 2305, while 577 samples are used in the testing of the NN. 

As illustrated in [19], the cascade forward backpropagation trained NN provides 
the optimum performance for our case. However, before applying Jackknife tech-
nique, the number of hidden nodes was found empirically. We have started with 1 
hidden node and continuously were increasing the number of hidden nodes until 35 
hidden nodes were reached. Every time a new number of hidden nodes were used, the 
error rate and the recognition rate were recorded. After carrying out all the empirical 
experiments it was found that optimum performance was reached with 9 hidden 
nodes. 

After the hidden nodes number was set to 9, ten training and testing experiments, 
based on the Jackknife technique were carried out to evaluate the NN performance, as 
illustrated in Table 1. On average, our system can provide 91.7% correct prediction 
for the possible occurrence of a solar flare and it can predict the class of this flare cor-
rectly in 88.3% of all cases.

Table 1. Experiments and results with Jackknife technique. (CFP= Correct Flare Prediction, 
CFTP= Correct Flare Type Prediction).

Experiment Convergence % CFP in %  CFTP in
No Error Total Flares Total Flares
1 0.02850 91.50780 88.90815
2 0.03010 93.93414 90.29463
3 0.03400 90.64125 87.69497
4 0.02990 91.68111 90.12132
5 0.02754 89.60139 86.82842
6 0.02755 92.37435 86.82842
7 0.02740 90.29463 86.82842
8 0.04290 92.20104 88.04159
9 0.03070 91.85442 87.86828

10 0.02980 93.41421 89.94801

Average 0.03084 91.75043 88.33622

5 Conclusions

In this paper, an automated NN-based system that provides efficient prediction of so-
lar activities that can affect life on Earth is presented. The system processes two pub-
licly available solar catalogues from the National Geophysical Data Center and com-
pares the reported occurrences of M and X solar flares with the relevant sunspots that 
were classified earlier and exist in the same NOAA region. To increase the accuracy 
of prediction, a mathematical model, based on the work of [27], is implemented to 
simulate the solar activity during the times of flares occurrences. The simulated activ-
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ity and classified sunspots are converted to the appropriate numerical formats and fed 
to cascade forward backpropagation NN, to predict whether a significant flare will 
occur and whether it is going to be an X or M flare.

Also, with this work, the results found for correct flare prediction in [19] is im-
proved to 91.7% from 85% and correct flare type prediction is improved to 88.3% 
from 78% by using a simpler topology and also number of inputs in the network is re-
duced to 4 from 8. By all means this study outperforms the previous work in [19] and 
can be used for automated flare prediction from sunspot groups. 

Our practical findings in this paper show that there is a direct relation between the 
eruptions of flares and certain McIntosh classes of sunspots such as Ekc, Fki and Fkc. 
which are in accordance with [33], [34], [35], but it is the first time to verify this rela-
tion using machine learning.

We believe that the quality of this work can be enhanced if evolutionary learning is 
used in conjunction with the learning algorithms presented here. This paper is a first 
step toward building a real-time flares prediction model. Hence, it is important for our 
learning algorithms to be able to improve its learning and generalisation capabilities 
by continuous learning from the new sunspots data, which is available on daily basis. 
This can be done if automatic learning algorithms that require no user intervention are 
applied once the prediction model is built. For our future work, we intend on explor-
ing the feasibility of using evolutionary learning, which is slow but very versatile, for 
our application. The feasibility of designing a hybrid system that combines evolution-
ary learning with cascade correlation neural networks in a manner similar to Nessy 
algorithm [36] will be explored. We will also explore the feasibility of integrating 
SVM in such system. In addition, we intend to apply more testing criteria for the 
newly developed learning algorithms. 

In this work, we have tested our system using the Jack-knife technique, which pro-
vides a correct statistical evaluation for the performance of the classifier, when im-
plemented on a limited number of samples. This test has proven that a nonlinear rela-
tion exists between sunspots data and the occurrence of flares. However, for our 
future work we will extend our evaluation criteria by training the model on certain pe-
riods of time and testing it on the remaining periods.
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